Skip to content

References and Links

The literature of PAH structure, optical properties, toxicology, their role in astrophysics, and their role as precursors to "soot" formation in flames are each massively complex and extremely rich. Therefore, this list represents our own biases in assembling this database.

Related Databases

The NIST PAH Properties Data Base
This website is a product of the Chemical Informatics Research Group  at NIST and is connected with data collected for NIST Special Publication 922: Polycyclic Aromatic Hydrocarbon Structure Index. In addition to structural data, it contains thermochemical data derived from DFT calculations.

The NASA Ames PAH IR Spectroscopic Database
Developed by the astronomers, laboratory chemists and theoretical chemists at the facilities of NASA's Ames Research Center this database is a collaboration of different institutes, across several countries. This database was initially intended for use by astronomers to explain the astronomical unidentified infrared (IR) bands and to investigate the "PAH hypothesis". Contains mostly theoretical but also some experimental data on IR bands of 3,139 neutral and ionic PAH. IR spectra can be downloaded from the database.

Theoretical Spectral Database of Polycyclic Aromatic Hydrocarbons and Pure Carbon Clusters
A database of 40 PAH and their ions focusing on vibrational and rotational properties, it includes downloadable geometries, harmonic and anharmonic vibrational frequencies and photo-absorption cross-sections. Data was calculated using TDDFT calculations in NW Chem and OCTOPUS. Bibliographic references from the astrochemistry literature up to 2007 are also available for each PAH molecule.

Scientific Literature

E.M. Adkins, J.A. Giaccai, J.H. Miller, Computed electronic structure of polynuclear aromatic hydrocarbon agglomerates, Proceedings of the Combustion Institute. 36 (2017) 957–964. doi:10.1016/j.proci.2016.06.186.

E.M. Adkins, J.H. Miller, Towards a taxonomy of topology for polynuclear aromatic hydrocarbons: linking electronic and molecular structure, Phys. Chem. Chem. Phys. 19 (2017) 28458–28469. doi:10.1039/C7CP06048C.

R.A. Alberty, M.B. Chung, A.K. Reif, Standard Chemical Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons and Their Isomer Groups. II. Pyrene Series, Naphthopyrene Series, and Coronene Series, Journal of Physical and Chemical Reference Data. 18 (1989) 77–109. doi:10.1063/1.555826.

R.A. Alberty, A.K. Reif, Standard Chemical Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons and Their Isomer Groups I. Benzene Series, Journal of Physical and Chemical Reference Data. 17 (1988) 241–253. doi:10.1063/1.555823.

F. Alvarez-Ramírez, Y. Ruiz-Morales, Island versus Archipelago Architecture for Asphaltenes: Polycyclic Aromatic Hydrocarbon Dimer Theoretical Studies, Energy & Fuels. 27 (2013) 1791–1808. doi:10.1021/ef301522m.

C.W. Bauschlicher Jr, A. Ricca, C. Boersma, L.J. Allamandola, The NASA Ames PAH IR Spectroscopic Database: Computational Version 3.00 with Updated Content and the Introduction of Multiple Scaling Factors, ApJS. 234 (2018) 32. doi:10.3847/1538-4365/aaa019.

C. Boersma, C.W. Bauschlicher Jr, A. Ricca, A.L. Mattioda, J. Cami, E. Peeters, F.S. de Armas, G.P. Saborido, D.M. Hudgins, L.J. Allamandola, The NASA Ames PAH IR Spectroscopic Database Version 2.00: Updated Content, Web Site, and On(Off)line Tools, ApJS. 211 (2014) 8. doi:10.1088/0067-0049/211/1/8.

E. Clar, The Aromatic Sextet, John Wiley & Sons, London, 1972.

J.A. Giaccai, J.H. Miller, Examination of the electronic structure of oxygen-containing PAH dimers and trimers, Proceedings of the Combustion Institute. (2018). doi:10.1016/j.proci.2018.05.057.

I. Gutman, D. Babić, Characterization of all-benzenoid hydrocarbons, Journal of Molecular Structure: THEOCHEM. 251 (1991) 367–373.

I. Gutman, Topology and stability of conjugated hidrocarbons. The dependence of total p-electron energy on molecular topology, (n.d.) 16.

I. Gutman, Y. Ruiz-Morales, Note on the Y-Rule in Clar Theory, Polycyclic Aromatic Compounds. 27 (2007) 41–49. doi:10.1080/10406630601134268.

K.O. Johansson, J.Y.W. Lai, S.A. Skeen, D.M. Popolan-Vaida, K.R. Wilson, N. Hansen, A. Violi, H.A. Michelsen, Soot precursor formation and limitations of the stabilomer grid, Proceedings of the Combustion Institute. 35 (2015) 1819–1826. doi:10.1016/j.proci.2014.05.033.

J.Y.W. Lai, P. Elvati, A. Violi, Stochastic atomistic simulation of polycyclic aromatic hydrocarbon growth in combustion, Physical Chemistry Chemical Physics. 16 (2014) 7969. doi:10.1039/c4cp00112e.

G. Malloci, G. Cappellini, G. Mulas, A. Mattoni, Electronic and optical properties of families of polycyclic aromatic hydrocarbons: A systematic (time-dependent) density functional theory study, Chemical Physics. 384 (2011) 19–27.

G. Malloci, C. Joblin, G. Mulas, Theoretical evaluation of PAH dication properties, Astronomy and Astrophysics. 462 (2007) 627–635. doi:10.1051/0004-6361:20066053.

G. Malloci, G. Mulas, G. Cappellini, V. Fiorentini, I. Porceddu, Theoretical electron affinities of PAHs and electronic absorption spectra of their mono-anions, Astronomy and Astrophysics. 432 (2005) 585–594. doi:10.1051/0004-6361:20042246.

G. Malloci, G. Mulas, G. Cappellini, C. Joblin, Time-dependent density functional study of the electronic spectra of oligoacenes in the charge states- 1, 0,+ 1, and+ 2, Chemical Physics. 340 (2007) 43–58.

G. Malloci, G. Mulas, C. Joblin, Electronic absorption spectra of PAHs up to vacuum UV: Towards a detailed model of interstellar PAH photophysics, Astronomy and Astrophysics. 426 (2004) 105–117. doi:10.1051/0004-6361:20040541.

G. Malloci, C. Joblin, G. Mulas, On-line database of the spectral properties of polycyclic aromatic hydrocarbons, Chemical Physics. 332 (2007) 353–359.

J.O. Oña-Ruales, Y. Ruiz-Morales, Extended Y-Rule Method for the Characterization of the Aromatic Sextets in Cata-Condensed Polycyclic Aromatic Hydrocarbons, The Journal of Physical Chemistry A. 118 (2014) 12262–12273. doi:10.1021/jp510180j.

J.O. Oña-Ruales, Y. Ruiz-Morales, The Predictive Power of the Annellation Theory: The Case of the C 3216Benzenoid Polycyclic Aromatic Hydrocarbons, The Journal of Physical Chemistry A. 118 (2014) 5212–5227. doi:10.1021/jp504257k.

R. Rieger, K. Müllen, Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies, J. Phys. Org. Chem. 23 (2010) 315–325. doi:10.1002/poc.1644.

Y. Ruiz-Morales, HOMO−LUMO Gap as an Index of Molecular Size and Structure for Polycyclic Aromatic Hydrocarbons (PAHs) and Asphaltenes: A Theoretical Study. I, The Journal of Physical Chemistry A. 106 (2002) 11283–11308. doi:10.1021/jp021152e.

Y. Ruiz-Morales, The Agreement between Clar Structures and Nucleus-Independent Chemical Shift Values in Pericondensed Benzenoid Polycyclic Aromatic Hydrocarbons: An Application of the Y-Rule, The Journal of Physical Chemistry A. 108 (2004) 10873–10896. doi:10.1021/jp040179q.

Y. Ruiz-Morales, Aromaticity in pericondensed cyclopenta-fused polycyclic aromatic hydrocarbons determined by density functional theory nucleus-independent chemical shifts and the Y-rule — Implications in oil asphaltene stability, Can. J. Chem. 87 (2009) 1280–1295. doi:10.1139/V09-052.

Y. Ruiz-Morales, O.C. Mullins, Polycyclic Aromatic Hydrocarbons of Asphaltenes Analyzed by Molecular Orbital Calculations with Optical Spectroscopy, Energy & Fuels. 21 (2007) 256–265. doi:10.1021/ef060250m.

Y. Ruiz-Morales, O.C. Mullins, Measured and Simulated Electronic Absorption and Emission Spectra of Asphaltenes , Energy & Fuels. 23 (2009) 1169–1177. doi:10.1021/ef800663w.

Y. Ruiz-Morales, O.C. Mullins, Singlet–Triplet and Triplet–Triplet Transitions of Asphaltene PAHs by Molecular Orbital Calculations, Energy Fuels. 27 (2013) 5017–5028. doi:10.1021/ef400168a.

Y. Ruiz-Morales, X. Wu, O.C. Mullins, Electronic Absorption Edge of Crude Oils and Asphaltenes Analyzed by Molecular Orbital Calculations with Optical Spectroscopy, Energy & Fuels. 21 (2007) 944–952. doi:10.1021/ef0605605.

S.E. Stein, A. Fahr, High-temperature stabilities of hydrocarbons, The Journal of Physical Chemistry. 89 (1985) 3714–3725.

P. Weilmünster, A. Keller, K.-H. Homann, Large molecules, radicals, ions, and small soot particles in fuel-rich hydrocarbon flames: Part I: positive ions of polycyclic aromatic hydrocarbons(PAH) in low-pressure premixed flames of acetylene and oxygen, Combustion and Flame. 116 (1999) 62–83. doi:10.1016/S0010-2180(98)00049-2.